INDIAN SCHOOL AL WADI AL KABIR

REHEARSAL EXAMINATION-I

08/12/2022
Class: XII

Maximum Marks: 70
Time: 3 Hours

SET - I - ANSWER KEY

1.	(A) osmotic pressure	1
2.	(C) first order reaction	1
3.	(B) Argon	1
4.	(C) (iii) and (iv)	1
5.	(D) 2	1
6.	(D) +3	1
7.	(A) i, iv	1
8.	(D) Benzyl halides are more reactive than vinyl and aryl halides	1
9.	(B) a dehydrohalogenation reaction	1
10.	(B) Scandium	1
11.	(C) Linkage Isomers	1
12.	(C) Polypeptides	1
13.	(A) Acetone	1
14.	(B) 2-Methylbutan-2-ol	1
15.	(C) Assertion is correct statement but reason is wrong statement.	1
16.	(D) Assertion is wrong statement but reason is correct statement.	1
17.	(A) Assertion and reason both are correct statements and reason is correct explanation for assertion.	1
18.	(C) Assertion is correct statement but reason is wrong statement.	1
19.	a) Oxygen stabilizes Mn more than F due to multiple bonding. b) This is due to decrease in size and increase in mass from titanium to copper.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20.	$\begin{aligned} \mathrm{k}= & 0.693 / \mathrm{t} \\ \mathrm{k}= & 0.0277 \mathrm{~min}^{-1} \\ \mathrm{t}_{80 \%} & =(2.303 / 0.0277) \log 100 / 20 \\ & =58.11 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

21.	a) In phenol, lone pair of electrons on oxygen are delocalized over benzene ring due to resonance but in alcohol lone pair of electrons on oxygen are localized and hence available for protonation. b) In anisole, $\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$ bond is stronger than $\mathrm{O}-\mathrm{CH}_{3}$ bond as $\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$ bond has partial double bond character due to resonance.	1 1
22.	a) b) a) i) PCC (or any other suitable reagent) ii) Conc. HNO_{3} b)	1
23.	Due to osmosis. An increase in temperature would accelerate the process of osmosis.	
24.	a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}_{2}$ b) Coordination number is 6 Oxidation state of chromium is +3 OR	1 $1 / 2$ $1 / 2$

28.	a) Lead storage battery is a secondary battery. Anode: $\mathrm{Pb}(\mathrm{s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{e}^{-}$ Cathode: $\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Overall reaction: $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ b) Ions are not involved in the overall cell reaction in the mercury cell.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1
29.	a) i) $\mathrm{CH}_{3} \mathrm{Br}$ ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ b)	1 1 1
30.	a) Carbon-oxygen bond in phenol has a partial double bond character due to resonance. b) It is due to symmetry of para-isomers that fits in crystal lattice better as compared to ortho- and meta-isomers. c) Grignard reagents are highly reactive and react with any source of proton to give hydrocarbons. d) Due to -I effect of halogen, ring is deactivated. (Any 3 correct answers)	1 1 1 1 1
31.	a) E and F b) A and B c) Exothermic reaction. The intermolecular attractive forces between C and D is stronger than those Between C-C and D-D. Therefore, energy is released. OR $\text { c) } \begin{aligned} & P_{\text {total }}=P_{1}{ }^{0}+\left(P_{2}{ }^{0}-P_{1}{ }^{0}\right) X_{2} \\ & 400=350+(500-350) X_{2} \\ & X_{2}=1 / 3=0.33 \\ & X_{1}=2 / 3=0.67 \end{aligned}$	1 1 1 1
32.	a) Phosphodiester linkage. b) The two strands in DNA are complementary to each other because the hydrogen bonds are formed between specific pairs of bases. c) DNA - Adenine (A), guanine (G), cytosine (C) and thymine (T). RNA - Adenine (A), guanine (G), cytosine (C) and uracil (U). OR	1 1 1 1 1

34. a) Step 1: Protonation of alkene to form carbocation by electrophilic attack of $\mathrm{H}_{3} \mathrm{O}^{+}$.
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

Step 2: Nucleophilic attack of water on carbocation.

Step 3: Deprotonation to form an alcohol.

b)
$A=$
 , $B=$

 , D=

OR
a) Step 1: Formation of protonated alcohol.

Step 2: Formation of carbocation: It is the slowest step and hence, the rate determining step of the reaction.

Step 3: Formation of ethene by elimination of a proton.

b) i)

ii)

(or any specific example)

35.	a) i) Oxygen and fluorine have small size and high electronegativity. Hence, they can oxidize the metal to highest oxidation states. ii) This is because small atoms like B, C, H, N etc. can occupy interstitial sites in the lattice of transition elements. iii) This is because 5 f electrons in actinoids have poorer shielding effect than $4 f$ electrons in lanthanoids. b) $5 \mathrm{NO}_{2}{ }^{-}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO}_{3}{ }^{-}+3 \mathrm{H}_{2} \mathrm{O}$ c) $2 \mathrm{KMnO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$	1 1 1 1 1

